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TESTING AND INTERVAL ESTIMATION IN A CHANGE-
POINT MODEL ALLOWING AT MOST ONE CHANGE

Xiru Chen

1. INTRODUCTION

Consider the model
X(t) = f(t) +e(t), O0<t<1 (1)

where f(t) is a non-random function of the form

a+e, t. <t <1

with a, o, t0 unknown and 0 < to <1, to is called the "change-point"

(of the function f, or of model (1)), and 6 the jump at the change-
point. e(t) is a random variable whose distribution function F is
independent upon t. We assume that E(e(t)) = 0 for t € [0, 1], and
e(t) possesses a finite variance oz°

We desire to make inference on t0 and 6, using observations made

on {X(t)}. In this paper we assume that these observations are taken on
equal-paced t values, Specifically, we observe X(i/n), i = 1,...,n,
Note that X(i/n) depends upon both i and n, but for simplicity of notation

in the sequel we write Xi instead of X(i/n). We assume that Xl""’xn

are independent. These assumptions and notations, such as a, ¢, 02, F

are valid throughout this paper, and will not be mentioned latter.

Model (1), the so-called AMOC (Allowing at Most One Change), is the




i simplest model for change-point. As an important and extensively studied
lﬁf' model, there exists a huge literature on it, and we refer to Krishnaiah
e and Miao (1986), Cs®Brgo and Horvath (1986) for a detailed survey of this
:Es‘ subject.

) The methodology of the present paper is nonparametric in nature,

;d{ in that we do not resort to likelihood and thus, the normality condition
33& can be dispensed with. The work borrows an idea advanced by Yin (1986).
vl This idea proposes to search the possible change-point by comparisons
made locally. The method has the merit that the resulted statistic

in testing the null hypothesis

R o

8 =0 (i.e. no change-point exists) (3)
0N has a simple asymptotic distribution. This not only facilitates the
KN

i;% testing of HO’ but also is convenient in estimating the power of test,
and in constructing a confidence interval for the change-point to.

These problems will be studied in Section 2, Section 3 and Section 5,

%
N

with different assumptions on F. Section 6 is devoted to a brief

discussion about the statistical inference on the jump 6. Section 4 is

S e
s e
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related to the estimation of variance cz.
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2, F IS NORMAL WITH A KNOWN VARIANCE

In this section we consider the case that
2
F~s N(0,0°) (4)

and o? is known. The method is based upon the following theorem,

THEOREM 1. Suppose that Xl,.a.,Xn are independently and identically
distributed (iid) with a common distribution N(a,oz). Let £ = En be

a positive integer such that

lim Z/n =0, 1im (logn)z/Z =0

N oo (5)
Define
m m-¢ .
Vom—— ) X=X, om=20, 204, . (6)
M 27 m-f+1 ' m-Ze+l
£, = max{|Ym| tm = 2¢,28+1,.. ,n} (7)
A (x) = T2109(3n/20-3) 1712 (x4210g(3n/2¢-3
n . 9(3n/2¢-3) + Hoglng(3n/2¢-3) - Hogn) (8)
Then, 1 I"P(g /o < A (X)) = exp(-2e7), - o< x <= (9)

Proof. Construct a Standard Brownian Motion {W(t), t > 0} such

that
WD) =/FEX . 4% ma)/o,  m = 1,2,...
and put
2(t) = 37 V2[u(t)-m(t+3/2) + W(t+3)], t > 0

Then it is seen Ym = ¢Z(3m/2¢-3), m

2¢, 2¢+41,... . Put

AC N -3 Wil ; .4, A ) N e ) [N
At DO L R TN A SR i'.: s .5'3 TR RS @5"_‘ i"!“
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£, = sup(|Z(t)] : 0 < t < 3n/28-3}, n =&, - g /o (10)
We show that
1im n_ /Togn = 0, a.s. (11)

n

N
In fact, we have

0<n 5};?—sup{|w(t+s) - W(t)| : 0<s <3/2¢, 0 <t < (3n-3)/2¢-3}
3

n

Insert T =3n/2¢ -3, h=3/22, e=1 and v = (V2/4)/Z]Togn s

in lemma 1.2.1 of Csorgo and Revesz (1981), we get

P(nn¢|ogn >38) <Cn exp(-62£/241ogn) (12)

Here § > 0 is given and C is a constant not depending on n, Since
t/(]ogn)2 - », (11) follows from (10) and Borel-Cantelli Lemma.

Z(t) is a stationary Gaussian process, with EZ(t) = 0, and

1 - tl, 0 < [t <3/2
P(r) = Cov(Z(t), Z(t+r)) =¢-1 +|1!/3, 3/2 < |t <3
0 J<t] <=
Thus, the conditions of a theorem of Qualls and Watanabe (1972) are met

and we have

liz P(Enf_An(x» = exp(-2¢”%) (13)

For n large we have

An(X+AX) - An(x) > ax//2Togn, ax > 0,
< ax/V/2logn, ox < 0.

R g E T B0 R OO SR 0 R aY oY o000,
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X Hence
R P(En < Ap(x-lax])) - P(n_ > [ax|//ZTogn)

3' < Plg /o < A (X))
o < P(g, < A (X+[ax|) + P(n > [ax|/vZTogn) (14)

KU For n 1large. From (12) - (14), letting n+ ~and then ax -~ 0, we
X ' get (9). Theorem 1 is proved.
;%&. Theorem 1 suggests a way to test the hypothesis (3): For the chosen

size o, 0 < a < 1, solve the equation exp(-2e'x) =1 - a, the solution is

‘}:: x(a) = -log(-41og(1-a))

o Calculate d = 2¢/n, Cn(a,d) = An(x(a)L and reject the null hypothesis

-

y
T

(3) when and only when

E >g¢ Cn(a,d) (15)

n

| AR,
2PLLE

> .
-
(o

iz

Under condition (3), this test has an asymptotic size a as the sample

size n tends to infinity.

We give an estimate of the power g(o) = Bn(e,o) of this test,

"

For this purpose, let r be the integer satisfying

r/n < t0 < (r+l)/n (16)

Then Yr+£ ~ N(VT]2 6,02). Therefore,

-

3:2' g(6) > P(‘Yr‘+2| > g Cn(a,d))

"

e = 3 174 C (a,d)) +‘¢6_lﬂlf§ - C (a,d))
o VZg V2 o n

b7 > o 2E ¢ (a,0)) (17)
*,7'. /2— g
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where ¢ is the distribution function of N(0,1). From this inequality
it is seen as is obvious intuitively, that for gaining a larger g8(s),
one should give £ a larger value.(17) Also suggests, as is again
obvious intuitively, that 8(6) increases steadily with |e|/o, the
magnitude of the jump measured against the standard deviatioﬁ 0.
Practically, the presence of a change-point is of importance only when
the ratio |6|/o is substantially different from zero,

Now consider the interval estimation of the change-point t The

0.
existence of t0 may be a fact known in advance, but usually it is
evidenced by the rejection of the null hypothesis (3). Regardness which
is the case, we adopt the following

Rule, Find integer k such that |Ykl =g Take [(k-22)/n,

k/n] as the confidence interval of to.

The length of this interval is d = 2£/n. Therefore, to enhance

the accuracy of this estimate, one should choose a small £. But there
are other things to be considered., First, if the existence of to is to be
decided by the test defined above, a small £ increases the risk of

false acception of the hypothesis (3), when in fact it is untrue,

Second, a small £ corresponds a low confidence coefficient of the
interval . To be more specific, we give an estimate of the confidence
coefficient v of this interval, as follows:

K- k
v = P( nZ?. =5)

R

sup
Z P( {mt(r,y+2£)lle <0 Cn(a,d}mgljﬁol > g Cn(a,d%)

Since Xm, Xm-l’ oo Xm-2£-1 are iid when m €(r, r+2¢), by Theorem 1 we have




9
W ’
\Y
9 ﬁ sup
B2 p ( Y| <o cn(a,dﬁ > Pz <o Cn(a,d)) =l-a  (18)
mé(r,r+22)
o
S where the probability P(gn <ag Cn(a,d)) is computed under the condition
I\I —
h:,\'..
*f; that Xl"°°’xn are iid. Hence, neglecting the error in the latter
i
iig equality of (18), we have
3
v 2 (1ma) + P([Y ] 2 0 C () - 1
03 .
::" . > ®(M - Cn(a,d)) - a (19)
ot vZ o
o
L/
E:& and this inequality suggests that y should increase with |o|/a.
}’f Using (19), we can give the following important question an approxi-
-
j;j mate solution: Form a confidence interval of ty with prescribed
o
P14 Tength dy and confidence coefficient 1 - «j. The question is how
{
‘3i; to choose £ and n, To do this, give a in (19) the value a0/2, and
“:'5:'
258 solve the equation
2 o8] IWE o - € (asd)) = 1 - ap/2
‘.-':"
A to obtain
157
o 16l\-2,~ 20 2
~ = 61y~ - —
. £=2(-1) (€ (5dg) + Uao/Z) »  n=20/dg . (20)
o ] 5 - poi f .
B Here Ua0/21s the upper 10/2 point of N(0,1)
'r; The solution (20) has the trouble that it involves the parameters
Qi i
i:ﬁ 6 and &, the former is surely unknown and the latter is usually unknown,
28 ’
5}5 In some cases it may be feasible to take some preliminary samples to
o give a crude estimation of them, but we recommend the following prote-
::é ' dure: Decide by practical consideration a constant M such that only
N> D
%
®
o __ |
e D e G T e N O R L B S D R b !
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U when |8|/c > M, the change-point tO is of any real importance.

. Replace |8]/c in (20) by this M.

?ﬁ For example, take % = 0.05, d0 = 0.1, M=2, (20) gives

5 ¢ =19,46,  n =389.2

:«6 The result seems rather good as it is comparable with the sample size
o which is needed in estimating the probability p of the binomial

Wy B(n,p). The sample size needed to guarrantee a confidence interval of
o p not Tonger than 0.1 and with a confidence coefficient not smaller
Yoy than 0.95 is roughly 384, So when |8|/c is not smaller than 2, which
+ seems a moderate requirement in practice, we are in a situation com-

parable to one seeking an estimation of the binomial p.
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oy 3. F IS NORMAL WITH VARIANCE UNKNOWN
X When the varijance 02 is unknown, we use the sample Xl’ e Xn
W
:l 1,1) . . - . 2 a
,\R to estimate it. Denote by o~ the estimator of o“, we use o to replace
)
'ni o in (15) to perform the test. In order that the resulted test still
f?}_ has an asvmptotic size a, the estimator 32 must satisfy certain condi-
7‘?1 tion stated in the following theorem.

- THEOREM 2. Suppose that the conditions of Theorem 1 are met, and

'? - '
§\j 02 is an estimator of 02 satisfying
2,
M im' ¢ - a ‘1ogn =0 (21)
- N ’
b
;f:{ p means convergence in probability. Then

Yy
P33
. Tim - - -X
e o PLEG/T < A (X)) = exp(-2e ") (22)
e
;»:3 Proof follows easily from Theorem 1, For, from (21) we have
A5
L8 -
D o - ol]ogn—gyo. Thus, for arbitrarily given ¢ > 0 we have
o :

S P(gn/o :_An(x)(l-e/logn)) - Pl o~ dlogn > ¢)

I
= ' < Plg /o < A (X))
;j? f_P(gn/o E_An(x)(1+s/1ogn)) + P(|S - o|logn > ¢)
&

Given § > 0, For n large we have

b

!
‘525 AR (x-8) < A (x)(1-e/logn) < A_(x)(1+e/logn) < A _(x+§)
"~ n = N - n - n

L

- Therefore, for n large we have
Y
P2/
f &%1
f; i

®
R

M
;‘l.?:' . “'i'.,\ w5 '-".M.M!':‘f: !‘l -“f .‘l"? - : 1 ] !l .! { ) ‘ { I‘:“’ { i' ] - , .. .".‘n ‘ A ‘!‘ﬂ’.‘o ' “ : ‘bl‘ ! ( R ".I‘z‘ﬁeh \‘n‘b‘:‘i'!‘l'\..-




0! 10

iy

s

f}t‘}: . -
B P, /o < A (x=63) = P(Jo - o[Togn > ¢)

l.g’!
;‘I PN
< Plg /o < A (X))

Lo

‘.-li -

) < P(g /o < A (x+5)) + P(]o - o|logn > €)

At - n - n -

W

}3¢ Letti d th § -0 btain (21)

e etting n -+« and then -+ 0, we obtain

Estimation of the variance 02,

!"qs"
i? Under the normal assumption here, the maximum 1ikelihood estimator
¥
i

f:' has the form (26) given below, The following theorem shows that this
‘}i'- )

) estimator satisfies (21).

¥
ﬁ;j THEOREM 3. Suppose that {Nl,Nz,...} is a sequence of positive
" -
\-"'b
R integers tending to infinity. For each n, there are given Nn indepen-
3*{ dent variables X . i = 1,...,N  such that
35 ni, n,

b
;’ Xrn' -~ F(x)’ 1 = lsooOan’ Xn.i ~ F(x-e)’ 1= mn+19'0-9Nn

I'!'I'
ﬁﬁﬁ where F 1is a distribution function whose moment of (2+6)-th order
t
;&* exists, 6 1is a constant. Define
! N N

' c n n
¢ff7 anc N %Xni/c’ Yn2c N Cglxni/(Nn'c)’ Yn B % Xni/Nn (23)
-

? i
¥ IR U Y Nzn (X X0 )%, = 1,..,N (24)

" nc ni~*n1c! ni "n2c’ °? 20027y

_ 1 c+l
l, *

q_*: 2 - 3 [ 2 . = (
:§: $°(n) = m1nlSnc : C 1,...,Nr} (25)
538 2232 = s%(ny/N (26)
- n
o

oo

Wy

A
B R e 2 o e R A O R N I R AR I D
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D2 Then we have,
Tim«2 2 p
e |0y = @ [TogN 20 (27)

) where o© 1is the variance of F.

Proof. For simplicity of writing we shall in the sequel omit the

e . symbol n in all notations. Thus, X ., m., N, Ynlc’ 76, Sﬁc, Sz(n)

2

and S’ 2 52

will be abbreviated to X,, m, N, X, , ¥, s, s% and o

i 1c?
respectively. Put Yi =X, - Exi, T. =Y, + ...+ Yi’ Given ¢ > 0,
W from Kolmogorov inequality we have

4

P(ch/C| < e/1ogN, Ne/logN < ¢ < N) > 1 - D(TogN) /N (28)

PU(Ty=T )/ (N-C)] < e/TogN, 1 < c < N(1-¢/logl) >1 - D(1ogN)*/N (29)

Here and in the following we shall use D to denote a constant not
& depending on n, which may assume different values in each of its

N,
D) appearance. From (28), (29), we have
P(ITC/cl < e/1ogN, i(TN-TC)/N-c)!‘: e/TogN :

Ne/logN < ¢ < N(1-¢/TogN)) > 1 - D(TogN)*/N. (30)

First consider the case 8 = 0, Since

2 2 _  C(N-c) (v 2
Cd Sc m Sy - 'j"ﬁ"l (ch'Yéc) (31)

" and i&c - iéc =T./C - (TN-TC)/(N-C) when & = 0, We have by (30}

and (31) that

p"\ 3.

BRI

»

O 00O N A R S P QT 40 T T NN ot N :
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p(si-sﬁ > - Nez/(logN)z, Ne/1ogN < ¢ < N(1-e/10gN))

> 1 - D(logN)*/N . (32)

For C < Ne/logN we have
Ne/TogN

2 2 v \2
Sc "y - ) ' (XI'XZC)
Ne/logN 2 . e -1 N 2
ARV R O 7 U RS (33)

For C > N(1-¢/logN) one obtains similarily

N

2
SC -3

b @4 £ (1o )‘12Nx2.) (34)
N(1-c/Toghy | 10g%  TogR" =47

From (32) - (34), and putting
Ne/TogN ‘ N 9

2
2¢ 1 2 10gN 2 .
Q = vy + T ) XS+ 2¢ (1 XS+ Y x$)  (35)
TogN ~ T-e N § Ne 1T "N(1-e/10gN) |
We have
P(]5%-52/N|Togh > Q) < D(Togh)*/N (36)
Denoting by a the expectation of variable Xl’ we have
T1i 2
nlz P(Q 5_{%%(0 +0%41)) = 0 (37)

Further, it can easily be shown that under the conditions of the present

theorem, there exists S' > 0 such that

; '
Hn WS (o2spm) B0 (38)

From (36) - (38), (27) follows.
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" Now turn to the case of 6 # 0. Put

Ky §;+1 xi/(c-m), c<m

P Tep Xi/(mc)y  c<m

@ A Then one can easily verify that

) —
. '(c‘m)(xzc'g)zy c>m
iy

-(m-C)(ch-a) , c<m

o Given e>0 small enough, Write

o J = {c : Ne/logN < c < N(1-e/TogN)

BT, and separate the following four cases:
o 1. C€J.
W As in the case of ¢ = 0, we have (33) and (34)

1 2. €69, NY/3<|cm| < nNT/12
J By Kolmogorov inequality, we have
P( Fp-(a+e)| < e/Togh, € €J) > 1 - D(TogN)*/N (40)

1/3 7/12)

- | P(|z-(a+0)| < e/TogN, N3 <c-m<N > 1 - D(logN)2N"1/12 (41)

1 P(le-al < e/logh, N3 <m-c < N/22) 5> 1 - p(logn)2n 12 (42)
From (40), (41), and the first part of (39), we get

e P(s2-s2 » - acPN/12/(10gM)?, ¢ 6 9, W3 < c - m < W/1Z)

A > 1 - D(logh)2N~1/12

ST T, TR
D O O O M D R OO O OO S B DO OT 0t DO )
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The case of ¢ < m can be handled by (40) (42), and the second part of
(39) resulting in an inequality similar to (43), Combining the two, we
O obtain

1/3 7/12)

2 2
) -
) P(S,-S

2> - 4PN 127100002, ¢ 6 9, N3 < feem] <

ZN-1/12

> 1 - D(TogN) (44)

3. C6d, |cm| > N/12
4 ) -—

¥ Kolmogorov inequality gives

P(le-(a+0)| < e/Togh, ¢ - m > N'/12) 5 1 . p(1ogn)2n~1/6 (45)

7/12) 6

5 P(|£-a] < e/logN, m - ¢ > N > 1 - D(Togh)2n"1/ (46)

From (40), (45) and the first part of (39), we get an inequality
similar to (43), Likewisely, from (40), (46) and the second part of

I\ (39), we get another inequality. Combine those two, we get
) P(s2-52 > - 4cPN/(1ogh)?, c6d, |c-m| 2 N'/12)

&J
: > 1 - D(TogN)2N"1/6 (47)

: 1/3
e 4, c6J, jc-m| <N
:&

N For ¢ m, we have by the first part of (39)

! ) 1/3

2 1/3 2 1/3,52 em+N 2
- 2o R 5 - AT

c X3) (48)

From (40) we have P( X, < jaj+| g |+1, c€J)>1-D(logh)/N,

Also it is easy to see that

o g ) ~‘»“-‘." ‘..;
R 3 0 P8 ‘-’.')‘ A !:’



¥
“' Hence, from (48) we get

2

*\!" P(SZ -S 6/7
(o m

> - N7, e, m<c<m+ N3y 51 pNl/6

This combining with the similar inequality obtained for the case of ¢ < m,
')»:, gives

P(s2 - 525> - N7, caa, fem| < N/3) 51 pN-1/6

M
A Combine this, (33), (34), (44), (47), define Q as before, and notice

2 2

2 .
that Sy > S > S”, we obtain

# P(IS2/N-o [10gN > Q) < D(logh)2N™ /12 (49)

Similar to the case of 6 = 0, here we can still prove that there exists

. a constant R not depending on n, such that 1im P(Q > Re) = 0. Also,
N>

A under the conditions of the present theorem, we can find &' > 0 such that

]
N°"|o? - SZ/N| » 0 in probability. These facts, combined with (49), give

iﬁa ‘ (27), and the theorem is proved,

DO OUOL DR R A A
R DX O D
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4. BIAS OF THE VARIANCE ESTIMATOR

Maintain the notations of section 3. Since 2 - min{si} < si, and
2 . w2 ~2 ~2 _ <2
ESm/(N-Z) = a°, we see that even if we replace ¢" by o= = S°/(N-2),

32 still underestimates o% Intditiver it seems clear that the bias

should be more serious if |e}/c is smll. So we propose to louk in some
detail the bias in case that s = 0.

From (31) we have

1,2 2y . max c 2 AT
Z(SN-S ) = l<c<N T 'TN-_ C ﬁTN) - i)sgplu (t)1//% l-t)}z 4,
<y <

where T, = Zg(xi-a)/o, and

(Trve1)el - [T /NN, 0 <t <1
Zy(t) =

0
When X, is normally distributed, or more generally, when E|x1|6 < » for

some 6 >2, the following asymptotic distribution is valid (Yao and

David (1984), Csorgo and Horvath (1986)):

11m 1 1 -
(/Zlogzn /ﬁ; - (21ogzn+flog3n-zJogn) < x) = exp(-2¢”%)

0 Here log,,,(x) = Toglog, (x), log,x = Togx. From this, we deduce the
o

‘Lx’ following asymptotic distribution for the bias

i

W y Sz Sz

it m

',;:: MP( a < 2]092N+]og3N-]og"+x) = exp(-2 X/Z) (50)
R

\.'.0

Ry
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This asymptotic result suggests that the bias has a form

2

Sy - S = 21ogzN + 1og3N + Qp(l)

2
N

Further, since the distribution function exp(-2e'x/2)

has an expecta-
tion 2y + 2log2 = 2.5 + (y - the Euler constant), (50) suggests that

when N 1is large, we may take

52/(N-1-(21092N+1og3N-1ogw) - 2(y+l0g2)) = 52/(N-21092N-1093N-2,4)

as the estimator of 02, in order to bring down the bias.
In some applications we might know in advance that there exist some

constants Al’ XZ’ 0 < Al < xz < 1, such that the change-point t0 lies in

the interval [Al,xz]u In this case we may use

2 . o2
S (xl,xz) = mm(sc N ze 5_x2N)
instead of 52_ We have
2 (52-52(0,,0,)) = sup |Zy(t)[/VETTSET & v
v ANT 1°%2 P N & VN
a )\1_<_t:_>\2

It is shown (Csorgo and Horvath (1986)) that as N - =, v, converges to

N
v =sup(|V(s)] : 0<S 5.%Jog(xz(l-xl)/xl(l-xz))), where {V(s) : S > 0}

is the Ornstein - Uhlenbeck process, i.e., a Gaussian process with mean
zero and covariance function exp(-|t-s|). The distribution function of

v has been tabulated by Delong (1981). Put E(v) = C(xl,x it is

2))
reasonable to take SZ(AI,AZ)/(N-I-C(A1 Az)) as an estimator of 02.
An upper bound of C(xl,xé) can be estimated in the following way.

Put A = min(x, 1-x

1, 2). We have

o W N . .3 P -
(OO 1) W AL AR b= o
RS é10?04w‘0:»?41:!',;!l.r’c!v'0..'!q»'-,, PR R0 3, e D MDA R
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~
\ 1 2; N c 2
e -2—(5 -S (k xz)) < MaX$=riog (Tc'ﬁ TN) : AN < c < (1-X)N
i .1 0 Lq _Lleq ]2

i Ay Sy i_N<c<(1 N Te AL
)
K> 2 2
K 1 max ; 1 max
‘_:'.'.:; Y ¢ {fo_ci(l-x)NlB(t)ﬁ_ = X(1-7) {OitillB(t)}

Y
i

- Where {B(t), 0 <t <1} is the Standard Brownian Bridge.
'"‘* The distribution function of mt<1|B )| is well-known as
: k+1 2.2
Al 1 - 3" 2(-1)" “exp(-2k“x“). From which it is easy to get

-‘. 1

4 2 .

e g4 Max IB(t)I} =1-L oL oLy 2s0.85
: {Oitil 22 32 g2
‘,-' Hence,

1"“..

N -1
. Crq 2p) < 0.85 37 L1

B
J
ol Therefore, if we use
4.,‘::'
K

h, ~
:%::.: oz(x1 xz) = S‘?(x1 xz)/(N-z)

'.'.l—‘. ’ ’
% to estimate 02, the relative bias does not exceed
8.8
3.“- [o?-Es2(x; 3,)1/o% = (0.85 A" 1(1-0)71 - 1)/(n-2) (51)
\ _

el For example, take A\ = 1- Ay = 0.1, This value can perhaps be considered
pi
,‘:,4 v as small eno'gh for many applications. Take N = 100. According to (51),
‘rff‘o,

the relative bias does not exceed 8.6%, which is reasonably good, con-

L

W sidering the relatively small sample size 100 in estimating the variance
,ﬁ of a complicated model.
(64

s
Y -t AR
A, X% ‘l\a‘ '&‘.0

~ G Ty qF R O PRI Wy
i a ’ nY 4 p » 3% ) '\
RS R R RN X ST BRI “' "'. H R0y
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5

=
K 5. F IS NON-NORMAL

: \

_'i: When the distribution of the random error e(t) is non-normal, we can
N

:f: use the theory of strong approximation of partial sums of iid. variables
. v by Brownian Motion Process to give extensions of Theorem 1 to non-normal
»_

o cases, In this way the methods of previous sections can still be

ey

S applied.

RA

THEOREM 4, Replacing the assumption of Theorem 1 that

e X~ N(a,0%) by

ey

.\I

\.

‘ E(exp(tXl)) < o for |t| small enough (52)
-

.5_ Then the conclusion of Theorem 1 remains valid.

;: Proof. Put
{" Sk= (X1 + ... +Xk-ka)/o, k =1,2,...

¢ kY

b According to Komlés and others (1975, 1976), there exists a Brownian
o :

:; Motion process {W(t), t > 0} such that

W alP ReP IS, W(K)[/Togn < =,  a.s. (53)
i -

L

. Since

)

'_;: Yol = [\Sm-sm-t) = SpopSp- ZZH/M

A

D

";3 We have for m <n

i‘ ) Sup \ — (54)
;E | Y/ o= [W(m)-2W(m-2) +W(m-2£)1/ V22| < 4 0 S -Wlkil//27

f‘ —_—

j«.

) According to (53), noticing that laogn//Z ~ 0 as n - =, we get

"

i

..:

3N

o

R

‘k.-c OO . N AL X LN PR P LTI PP PR CE PR ot o "-‘w’((-.-"-\q\
AR R RCR iR !‘* e 0. sk -!nr'\g'a‘-ﬂ! Wt Ji s'loic" c"' WY 'H ° q'h (o 1 B A { . ." e i T AR AN AR N




ljz[;;;|Ym/c-[w(m)-zw(m-z) +W(m-20)1//2|1 = 0, a.s. (55
From Theorem 1, we have
ljf P (sup ([W(m)-2W(m-2) + W(m-22)1/vZC : m = 2¢,..,,n)}
<A (X)) = exp(-2¢7), -e<x<w (56)

Finally, (7) follows from (55) and (56). Theorem 4 is proved.

Since under the assumption (52) the conclusion of Theorem 3 is also
true, it follows that the method of the previous two sections applies
to the case in which (52) is true.

The condition ensuring the asymptotic results in sections 2, 3, can

further be substantially weakened.

THEOREM 5. Replacing the assumptions of Theorem 1 that Xlnu N(a,oz)

and (1ogn)2/£ +0 by : For some § > 2

EjX, 1% < o (57)

im p2/87e = (58)

Then the conclusion of theorem 1 remains valid.
The proof parallels that of Theorem 4, with the help of

another result of Kimlos and others, which asserts

Tim |su -1/6(
o {F:§|sk-W(k)|n :} =0, a.s.

under condition (57).

OO0 RO B 0l AL DO x OO L DRI T cadey
“«‘E‘t‘\’-»l"‘t’i“ﬁn‘-l‘h“"“"-’; - -'.0.:"’!,""@.5..-"‘-.\".’;.!'Q.'A’c.:’»';' —"‘l‘..'v‘!.l.:'t.9'i 3'!‘4’0%’0.!"‘,:"50 ‘."‘..v'“. .20":0.‘."‘-" e,
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6. ESTIMATION OF JUMP o
§ To form a point estimate of the jump e at the change point tO’
"‘-f";
5 we suggest the following procedure:
A . _
»_ 1. Find k such that [Y | = ¢,
‘h_c:
i:‘*‘. Compute
il
BN . s , N | k-2¢ .
- R =N I = A (59)
3R
oo -
.:“_j o is taken as an estimate of o,
23 .
(X When k =24, or k =n, 6 is not defined, 1In general, if k is
‘::l‘-j too near 2£ or n, this would imply that the change-point tO is too
s
-\'b
N
e near 0 or 1, and the samples at our disposal are perhaps not enough to
("‘ give a reasonable estimate.
%
N \ For an interval estimation of 6, we prove the following asymptotic
ol -
Ko theorem about o,
1hi
J_ THEOREM 6. Suppose that the &-th order moment of distribution F
N
- js finite for some & > 2. Further, 6 # 0 and £ satisfies (58)
.F_‘_'.
KL~ and &/n - 0. Then as n > = we have
‘9~
B (AT (TE5)/0) (6-6) = N(0,1) (60)
o
e
::' where_l-_, stands for convergence in law.
]
N Proof., Without losing generality, we assume a =0, ¢ =1 (see
'v‘f' section 1), Using Theorem 5 and slightly modifying the argument of section 2
»
:.: we easily show that
AL
'~'5~'

ey -~ ‘ R v.. S NN T
‘ R
'?‘:-'.M-, s o ‘cl.’n*. " ' " MY 0‘. \‘u o ”&'» t‘v RN AN 'cf"u": 5‘«“..7%!3,!!..!‘0 ,99 W mg‘&g hmm
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VM p(ntg < k < ntg * 20) = 1 (61)
Define n, = [nto- 221, n, =n - [nt0-+2€] -1, and
n "
T (= ) L7 (62)
=y - —_— X e) - 3 X.
Tn "o t0 (PZ n-g;+1( i n, g {)
Since ¢/n ~ 0, 0 < t0 <1, wehave as n - =
T —5 N(0,1) (63)
Now ,
n-k-n2 g X )
: = 8.0 = /ME1-t =5
T, - EGTT=t,) (6-8) MENT-E,) A=Y NP
p e k-22-n; "1 . k-_zzx
= MR A (=) LNt N
Therefore,
Sup{\Tn - /ntoll—to)(g-e)i PNty < kznty+ 28}
. n _
<C {5'3/Z£.$up(\z (Xi-e)l s j>n-ngt 1)
B J
n=n
+ n'l/ZSup(‘ Z (Xi-e)\ : [nto] +1<js<n- n2)
J
+ 32 E.Sup(\ii Xi\ 11 <ic< nl)
3 (64)
- ‘ : j A 1.
+n l/ZSup([Z‘?\1+1X1.l cny +1 <3< Intgdp & 1_21 iy

. . - A AT W
St T T AR AN N T ?:\" ANy
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where C 1is a constant not depending on n, Since £/n—5 0,
Xl”"’xn are independent with variance 1, EXi =g for
i>n-n,+1,it follows from Dosker's Theorem that
. %0 > (65)
Similarily,
1.2 0 as N - o (66)
n3 ’
Now define Xi = Xi +9 for 1 <i 5_[nt0], Xi = Xi for [nto] +1 <
i <n. Given arbitrarily e > 0, we have by Donsker's Theorem
n-n
1, <n Y2 sup(] T (X.-0) : [n(ty-e)] <j<n-n)
n2 — 3 i ) 0 -v - 2
-J=—9 Sup(|W(t)! : tO -est 5-t0)’ as n->w
—> 0, a.s. s, a5 -0
Hence,
P
Inz-——r 0, as n-+o (67)
Similarly
P
In4—o 0, as n - o (68)
Summing up (65) - (68), we get
1
|
Sup(]T - VRESTT=EG) (B-0) | @ nty < k < nty +2¢) <= 0 |

as n -, From this and (61),

concluded.

L e e W

o h o At AP .
) Lok L d (%
S ". » )xz’n‘-,h_. R DR R A BANAAS TS R n.t!’n‘:‘t SR g W’

(63), we obtain (60).

The proof is

v
S} !‘I‘v
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It is easy to see that £O = (k-£)/n 1is a consistent estimator of

,F: tO (of course, when 6 # 0 and thus tO is well-defined). Earlier we
‘é have introduced a consistent estimate ; of o. Substituting EO
1“
e for t0 and ¢ for o. We get the following theorem:
i$ THEOREM 7. Suppose that the conditions of Theorem 6 are met, we
N
.
N have
2 (hto(1-E)/3) (6-8) = N(0,1) (69)
o
:: as n -+ «
)
When 6 = 0, in which case tO has no meaning, the statistic to
is still well-defined, It is not known whether or not (69) is true for
;;' 8 = 0. So Theorem 7 cannot be employed to make tests for the hypothesis
iy 6 = 0, but (69) can be used to form a confidence interval of s, when
[}
’) 6 # 0 is assumed in advance, or as a result of the rejection of null
)
’ hypothesis o6 = 0.
> 0f course, if X1 is normally distributed, or more generally, X1
D)
;f satisfies condition (52), then the condition (58) in Theorem 6 and 7 can
#
R be weakened to (1ogn)2/£ -~ 0,
‘
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